Hyper-V Cluster Network configuration with following parameters:

The following configuration leverages 8x 1GB Ethernet NICs and LOM (LAN on Motherboard) and 2x 10GB Ethernet NICs. The storage can be connected via iSCSI with MPIO or SMB 3.x.x without RDMA. The configurations uses physical configuration and software defined / converged network for Hyper-V.

 Pro’s and Con’s of that solution

 Pro Con
– Good Bandwidth for VM
– Good Bandwidth for Storage
– Separated NICs for Livemigration, Cluster and Management
– Full fault redundant
– Can be used in switch independent or LACP (with stacked switches) teaming mode
– Only one Hardware Technology is used
– Network becomes limited by a large number of VMs
– Combination between Hardware Defined and Software Defined Network is sometimes hardly to understand


1GBE SW01 1 GBit/s physical stacked or independed
1GBE SW02 1 GBit/s physical stacked or independed
10GBE SW01 10 GBit/s physical stacked or independed
10GBE SW02 10 GBit/s physical stacked or independed
SoftSW01 10 GBit/s Software defined / converged
SoftSW02 10 GBit/s Software defined / converged

 Neccessary Networks

Networkname VLAN IP Network (IPv4) Connected to Switch
Management 10 SoftSW01
Cluster 11  SoftSW01
Livemigration 45 1GBE SW01 / 1GBE SW02
With iSCSI – Storage 40 10GBE SW01 / 10GBE SW02
With SMB – Storage 5051 10GBE SW0110GBE SW02
Virtual Machines 200 – x 10.11.x.x/x 1GBE SW01 / 1GBE SW02

 Possible rearview Server

 Schematic representation

Switch Port Configuration


Bandwidth Configuration vNICs

vNIC min. Bandwidth Weight PowerShell Command
Management 10%
Cluster 5%

QoS Configuration Switch

Networkname Priority
Management medium
Cluster high
Storage high
Livemigration medium
VMs dependig on VM Workload


Tagged , , , , , , , . Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.